Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There is currently a strong interest in the use of ion mobility spectrometry-mass spectrometry (IMS-MS) instrumentation for structural biology. In these applications, momentum transfer cross sections derived from IMS-MS measurements are used to reconstruct the three-dimensional analyte structure. Recent reports indicate that additional structural information can be extracted from measuring changes in cross sections in response to changes of the analyte structure. To further this approach, we constructed a tandem trapped IMS analyser (TIMS-TIMS) and incorporated it in a QqTOF mass spectrometer. TIMS-TIMS is constructed by coupling two TIMS analysers via an “interface region” composed of two apertures. We show that peptide oligomers (bradykinin) and native-like protein (ubiquitin) ions can be preserved through the course of an experiment in a TIMS-TIMS analyser. We demonstrate the ability to collisionally-activate as well as to trap mobility-selected ions, followed by subsequent mobility-analysis. In addition to inducing conformational changes, we show that we can fragment low charge states of ubiquitin at >1 mbar between the TIMS analysers with significant sequence coverage. Many fragment ions exhibit multiple features in their TIMS spectra, which means that they may not generally exist as the most stable isomer. The ability of TIMS-TIMS to dissociate mobility-selected protein ions and to measure the cross sections of their fragment ions opens new possibilities for IMS-based structure elucidation.more » « less
An official website of the United States government
